学术报告
题 目:Dynamics of geologic CO2 storage and plume
motion revealed by seismic coda waves
报 告人:朱铁源 教授
单 位:宾夕法尼亚州立大学地球科学系
报告时间:2018年6月4日上午10:00点
报告地点:中南大学地学楼234室
个人简介
朱铁源博士,现在宾夕法尼亚州立大学地球科学系任助理教授。2005年本科毕业于中国地质大学(北京),2008在中科院地质与地球物理所获硕士学位,2014年在斯坦福大学地球物理系获博士学位,2014-2016在德州大学奥斯汀进行博士后研究。主要研究地下复杂结构造成地震波传播,地震波衰减,时移地震,和CO2地质封存的地震监测 。在Geophysics、Netherlands Journal of Geosciences、Geophysical Journal International等国际期刊发表高水平论文40多篇,曾荣获2013年SEG最佳学生论文(Best Student Paper Award)和2018年SEG的J. Clarence Karcher
Award。
主要内容
Geological
CO2 storage is considered to be an effective method to reduce
anthropogenic CO2 emission. Quantifying the dynamics of sequestered CO2 plumes is critical for safe
long-term storage, providing guidance on plume extent, and detecting
stratigraphic seal failure. However, existing seismic monitoring methods based on
wave reflection or transmission probe a limited rock volume and have decreasing
sensitivity to cumulative CO2 saturations, decreasing their utility
in quantitative plume mass estimation. In this talk, I show that seismic scattering
coda waves, acquired during continuous borehole monitoring, are able to
illuminate details of the CO2 plume during a 74-hour CO2 injection experiment at the Frio II well Dayton, TX, USA. I show that velocity
reduction is nonlinearly correlated with the injected cumulative CO2 mass and attribute this correlation to the fact that coda waves repeatedly
sample the heterogeneous distribution of cumulative CO2 in the
reservoir zone. Lastly, because this approach does not depend on first arrivals
or well-constrained specular reflections it can be used with many
source-receiver geometries including those external to the reservoir, which
reduce the risk introduced by in-reservoir monitoring wells. The findings
provide a new perspective for quantitative CO2 monitoring and plume
evolution that increases safety and long-term planning for CO2 injection and storage.